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Abstract. This paper investigates the inverse problem of determining a heat source in the parabolic heat equation
using the usual conditions of the direct problem and a supplementary condition, called an overdetermination. In
this problem, if the heat source is taken to be space-dependent only, then the overdetermination is the temperature
measurement at a given single instant, whilst if the heat source is time-dependent only, then the overdetermination
is the transient temperature measurement recorded by a single thermocouple installed in the interior of the heat
conductor. These measurements ensure that the inverse problem has a unique solution, but this solution is unsta-
ble, hence the problem is ill-posed. This instability is overcome using the Tikhonov regularization method with
the discrepancy principle or the L-curve criterion for the choice of the regularization parameter. The boundary-
element method (BEM) is developed for solving numerically the inverse problem and numerical results for some
benchmark test examples are obtained and discussed.
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1. Introduction

The inverse problem of determining an unknown heat-source function in the heat-conduction
equation has been considered in many theoretical papers, notably [1–4]. With the exception
of [4], where the source is sought as a function of both space and time but is additive or
separable, in all the other studies the source has been sought as a function of space or time
only. However, no numerical implementations have been attempted yet under such a rigor-
ous mathematical back-up. In this paper the determinination of the unknown heat source is
sought from the usual conditions of the direct problem and a supplementary condition, called
an overdetermination. Two inverse problems are formulated in Section 2. In the first prob-
lem we take the heat source to be time-dependent only and the overdetermination is the tran-
sient temperature measured at a single interior point of the space domain, whilst in the second
problem the heat source is space-dependent only and the overdetermination is the tempera-
ture measurements along the domain at a given single instant. Although sufficient conditions
for the unique solvability of the inverse problem are provided, the problem is still ill-posed
since small errors, inherently present in any practical measurement, give rise to unbounded and
highly oscillatory solutions. One approach to solve this problem, which is referred to in the
literature as the method of output least squares, is to assume that the unknown heat-source
function is of a specific functional form depending on some parameters and then seek to
determine optimal parameter values which minimize an error functional based on the over-
specified data. However, this approach has the drawback that it is usually not evident that
the solution of the optimization problem solves the original inverse problem. Therefore, in
this paper, in order to overcome the instability of the solution, the BEM combined with the
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Tikhonov regularization and the discrepancy principle or the L-curve criterion for the choice
of the regularization parameter is developed (see Section 3) for the numerical solution of the
two inverse problems formulated in Section 2. Section 4 discusses the numerical results for two
benchmark test examples involving a spacewise and a timewise heat source. While solutions of
the linear heat equation with various kinds of source terms are widely known in the literature,
see e.g. [5–9], an original contribution of the paper may be found in the numerical treatment
of two inverse problems in order to obtain the stability of the numerical solution under ran-
dom perturbations of the input data. Finally, conclusions, some extensions and future work are
presented in Section 5.

2. Formulation of the inverse problems

Let T > 0, α ∈ (0,1) and l > 0 be fixed numbers and let us consider first the one-dimensional
time-dependent problem in which the source Q(x, t) = f (t) depends on time only. Hereafter
we use the Sobolev functional space notation of [10]; see the Appendix.

2.1. Inverse problem I

Find the temperature u∈H 2+α,1+α/2([0, l]× [0, T ]) and the heat source f ∈Hα/2([0, T ]) which
satisfy the heat-conduction equation with a time-dependent source, namely

∂u

∂t
(x, t)= ∂2u

∂x2
(x, t)+f (t), (x, t)∈ (0, l)× (0, T ], (1)

subject to the boundary conditions

u(0, t)=h0(t), u(l, t)=hl(t), t ∈ [0, T ], (2)

the initial condition

u(x,0)=u0(x), x ∈ [0, l] (3)

and the overspecified condition

u(x0, t)=χ(t), t ∈ [0, T ], (4)

where x0 ∈ (0, l) is the interior location of a thermocouple recording the temperature measure-
ment (4) and h0(t), hl(t), u0(x) and χ(t) are given functions.

We assume that the conditions (2–4) are consistent up to the first order, i.e.,

u0(0)=h0(0), u0(l)=hl(0), u0(x0)=χ(0), (5)

h′
0(0)=u′′

0(0)+χ ′(0)−u′′
0(x0), h′

l (0)=u′′
0(l)+χ ′(0)−u′′

0(x0). (6)

Then the unique solvability of the inverse problem (1)–(4) follows from the following theorem;
see Prilepko and Solov’ev [2].

Theorem 1. If h0, hl, χ ∈H 1+α/2([0, T ]), u0 ∈H 2+α([0, l]), and the conditions (2)–(4) are consis-
tent up to the first order, as given in (5) and (6), then the problem (1)–(4) has a unique solution
(u, f )∈H 2+α,1+α/2([0, l]× [0, T ])×Hα/2([0, T ]).

If instead of the condition (4) we specify a heat flux data, namely

−∂u

∂x
(0, t)=q0(t), t ∈ [0, T ], (7)

where q0(t) is a given function, we have the following solvability theorem; see [11].
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Theorem 2. If h0 =hl ≡ 0, u0 ∈H 1
0 (0, l) and q0 ∈C1(0, T ) then the inverse problem (1)–(3) and

(7) has a unique solution (u, f )∈ (H 1
0 ((0, l)× (0, T ))∩H 2((0, l)× (0, T )))×C(0, T ).

Theorems 1 and 2 show that the inverse problems (1)–(4) and (1)–(3), (7), respectively, have
unique solutions, but they are ill-posed since their solutions do not depend continuously on
the input data.

We now consider the problem in which the source Q(x, t)=g(x) depends on space only.

2.2. Inverse problem II

Find the temperature u∈H 2+α,1+α/2([0, l]× [0, T ]) and the heat source g∈Hα([0, l]) which sat-
isfy the heat-conduction equation with a space-dependent heat source, namely

∂u

∂t
(x, t)= ∂2u

∂x2
(x, t)+g(x), (x, t)∈ (0, l)× (0, T ], (8)

subject to the boundary and initial conditions (2) and (3), respectively, and the overspecified
condition

u(x, T )=�(x), x ∈ [0, l]. (9)

We assume that the conditions (2), (3) and (9) are consistent up to the first order, i.e.,

u0(0)=h0(0), u0(l)=hl(0), h0(T )=�(0), hl(T )=�(l), (10)

h′
0(0)−u′′

0(0)=h′′
0(T )−� ′′(0), h′

l (0)−u′′
0(l)=h′′

l (T )−� ′′(l). (11)

Then the unique solvability of the inverse problem (2), (3), (8) and (9) follows from the fol-
lowing theorem.

Theorem 3. If h0, hl ∈ H 1+α/2([0, T ]), u0,� ∈ H 2+α([0, l]), and the conditions (2), (3) and (9)
are consistent up to the first order, then the problem (2), (3), (8) and (9) has a unique solution
(u, g)∈Q :=H 2+α,1+α/2([0, l]× [0, T ])×Hα([0, l]).

Proof. From [3] we know that the operator of the inverse problem (2), (3), (8) and (9) is
Fredholm with zero index and therefore it suffices to prove that the problem given by (8) with
the homogeneous conditions (2), (3) and (9), i.e.,

u(0, t)=u(l, t)=0, t ∈ [0, T ], (12)

u(x,0)=u(x, T )=0, x ∈ [0, l] (13)

has only the trivial solution. By introducing the function v(x, t)=u(x, t)+F(x), where

F(x)=
∫ x

0

∫ x′

0
g(x′′)dx′′dx′ − x

l

∫ l

0

∫ x′

0
g(x′′)dx′′dx′, (14)

we have that v satisfies the problem

∂v

∂t
(x, t)= ∂2v

∂x2
(x, t), (15)

v(0, t)=v(l, t)=0, t ∈ [0, T ], (16)

v(x,0)−v(x, T )=0, x ∈ [0, l]. (17)
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Using Fourier sine-series, we may write the solution of the problem (15)–(17) as

v(x, t)=
∞∑

n=1

bn sin
(nπx

l

)
e
− n2π2 t

l2 , (18)

where

bn = 2
π

∫ π

0
v(x,0) sin

(nπx

l

)
dx (19)

and

v(x, T )=
∞∑

n=1

bn sin
(nπx

l

)
e
− n2π2T

l2 =
∞∑

n=1

bn sin
(nπx

l

)
=v(x,0), x ∈ [0, l]. (20)

From (20) it follows that bn = 0 for n ≥ 1, i.e., v ≡ 0. Then u(x, t) + F(x) = 0, which from
(13) implies that u≡0 and F ≡0. By differentiating twice (14) we have that g ≡0. Hence, the
unique solvability of the inverse problem (2), (3), (8) and (9) is established.

At this stage it is worth noting that instead of the “upper base” condition (9), one can
specify the heat-flux data, namely

−∂u

∂x
(0, t)=q0(t), or

∂u

∂x
(l, t)=ql(t) t ∈ [0, T ]. (21)

However, in this case the existence of a solution for the inverse problem (2), (3), (8) and (21)
is not guaranteed, although the uniqueness holds; see [5].

If the boundary conditions (2) are homogeneous, i.e., h0 = hl ≡ 0, then we also have the
unique solvability of the inverse problem (2), (3), (8) and (9); see [11].

Theorem 4. If h0 = hl ≡ 0 and u0,� ∈ H 1
0 (0, l) ∩ H 2(0, l) then the inverse problem (2), (3),

(8) and (9) has a unique solution (u, g)∈ (H 1
0 ((0, l)× (0, T ))∩H 2((0, l)× (0, T )))×L2(0, l).

Although the Inverse Problem II has a unique solution, it is still ill-posed since the solution
does not depend continuously on the input data.

At this stage, we can remark that the two problems I and II have a unique stable com-
ponent of the solution, u(x, t), and a unique, but unstable, component of the solution, f (t)

or g(x). Therefore, in order to overcome this instability of the solution in the heat-source
component we employ the BEM combined with the Tikhonov regularization technique, as
described in the next section.

3. The boundary-element method

By applying Green’s formula we can recast Equation (1) or (8) in the integral form

η(x)u(x, t)=
∫ t

0

[
G(x, t, ξ, τ )

∂u

∂n(ξ)
(ξ, τ )−u(ξ, τ )

∂G

∂n(ξ)
(x, t, ξ, τ )

] ∣∣∣ξ=l

ξ=0
dτ

+
∫ l

0
G(x, t, y,0)u(y,0)dy +

∫ l

0

∫ t

0
G(x, t, y, τ )Q(y, τ )dτdy

for (x, t)∈ [0, l]× (0, T ], (22)

where η(0)=η(l)=1/2, η(x)=1 for x ∈ (0, l), n is the outward normal to the space boundary
{0, l}× [0, T ], i.e., n(0)=−1 and n(l)= 1,Q(y, τ )=f (τ) for Equation (1) and Q(y, τ)=g(y)
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for Equation (8), and G is the fundamental solution of the one-dimensional heat equation,
namely

G(x, t, y, τ )= H(t − τ)√
4π(t − τ)

exp

(
− (x −y)2

4(t − τ)

)
, (23)

where H is the Heaviside step function.
Let us now discretize each of the boundaries {0}× [0, T ] and {l}× [0, T ] into N equidistant

boundary elements [ti−1, ti ] for i =1,N, ti = iT /N for i =0,N , and the space interval [0, l] into
N0 equidistant cells, [xk−1, xk] for k =1,N0, xk =kl/N0 for k =0,N0.

Using a constant BEM, we assume that the function u and its normal derivative ∂u
∂n

are constant over each interval and we take the value at their midpoints t̃i = (ti + ti−1)/2 =
(2i −1)T /N for i =1,N , and x̃k = (xk +xk−1)/2= (2k −1)l/N0 for k =1,N0, namely

u(0, t)=h0(t̃i ) :=h0i , u(l, t)=hl(t̃i ) :=hli, (24)

∂u

∂n
u(0, t)= ∂u

∂n
(0, t̃i ) :=q0i ,

∂u

∂n
u(l, t)= ∂u

∂n
(l, t̃i ) :=qli , (25)

u(x,0)=u0(x̃k) :=u0k, (26)

for t ∈ [ti−1, ti), i =1,N and x ∈ [xk−1, xk), k =1,N0.
With these approximations, the integral equation (22) can be approximated as

η(x)u(x, t)=
N∑

j=1

[
A0j (x, t)q0j +Alj (x, t)qlj −B0j (x, t)h0j −Blj (x, t)hlj

]+

+
N0∑
k=1

Ck(x, t)u0,k +D(x, t), (27)

where

A0j (x, t)=
∫ tj

tj−1

G(x, t,0, τ )dτ, Alj (x, t)=
∫ tj

tj−1

G(x, t, l, τ )dτ,

B0j (x, t)=
∫ tj

tj−1

∂G

∂n(0)
(x, t,0, τ )dτ, Blj (x, t)=

∫ tj

tj−1

∂G

∂n(l)
(x, t, l, τ )dτ,

Ck(x, t)=
∫ xk

xk−1

G(x, t, y,0)dy, for j =1,N, k =1,N0, (28)

D(x, t)=
∫ l

0

∫ t

0
G(x, t, y, τ )Q(y, τ )dτdy. (29)

Special attention is paid now to the domain integral (29). We seek a piecewise constant
approximation for the heat source Q(y, τ) and therefore we assume that

f (t)=f (t̃i) :=fi, t ∈ [ti−1, ti), i =1,N, (30)

g(x)=g(x̃k) :=gk, x ∈ [xk−1, xk), i =1,N0. (31)

The expression (29) is therefore approximated as

D(x, t)=
∫ t

0
f (τ)

(∫ l

0
G(x, t, y, τ )dy

)
dτ =

N∑
j=1

DI
j (x, t)fj , (32)
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if Q(x, t)=f (t) and

D(x, t)=
∫ l

0
g(y)

(∫ t

0
G(x, t, y, τ )dτ

)
dy =

N0∑
k=1

DII
k (x, t)gk, (33)

if Q(x, t)=g(x), where

DI
j (x, t)=

∫ tj

tj−1

∫ l

0
G(x, t, y, τ )dydτ, j =1,N, (34)

DII
k (x, t)=

∫ xk

xk−1

∫ t

0
G(x, t, y, τ )dτdy, k =1,N0. (35)

The integrals in Equations (28), (34) and (35) can be evaluated analytically and their expres-
sions are given in the Appendix.

By applying the integral equation (27) at the boundary nodes (0, t̃i ) and (l, t̃i ) for i =1,N ,
we obtain the system of 2N equations

Aq −Bh +Cu0 =d (36)

where

Ai,j =A0j (0, t̃i ), Ai,(j+N) =Alj (0, t̃i ), i, j =1,N, (37)

A(i+N),j =A0j (l, t̃i ), A(i+N),(j+N) =Alj (l, t̃i ), i, j =1,N, (38)

Bi,j =B0j (0, t̃i )+0.5δij , Bi,(j+N) =Blj (0, t̃i ), i, j =1,N, (39)

B(i+N),j =B0j (l, t̃i ), B(i+N),(j+N) =Blj (l, t̃i )+0.5δij , i, j =1,N, (40)

qj =q0j , qj+N =qlj , hj =h0j , hj+N =hlj , j =1,N, (41)

Ci,k =Ck(0, t̃i ), C(i+N),k =Ck(l, t̃i ), k =1,N0, i =1,N, (42)

di =−D(0, t̃i ), di+N =−D(l, t̃i ), k =1,N0, i =1,N, (43)

where δij is the Kronecker delta symbol.
Assuming that A is invertible, we can express the flux q from (36) as

q =A−1Bh −A−1Cu0 −A−1d. (44)

We now use the conditions (4) or (9) by applying the integral equation (22) at the points
(x0, t̃i ) for i =1,N , or (x̃m, T ) for m=1,N0, to obtain the system of N equations

χ =A(1)q −B(1)h +C(1)u0 +d(1) (45)

or

� =A(2)q −B(2)h +C(2)u0 +d(2), (46)

where

χi =χ(t̃i), �m =�(x̃m), i =1,N m=1,N0, (47)

A
(1)
i,j =A0j (x0, t̃i ), A

(1)
i,(j+N) =Alj (x0, t̃i ), i, j =1,N, (48)

B
(1)
i,j =B0j (x0, t̃i ), B

(1)
i,(j+N) =Blj (x0, t̃i ), i, j =1,N, (49)

C
(1)
i,k =Ck(x0, t̃i ), d

(1)
i =D(x0, t̃i ), i =1,N k =1,N0, (50)

A
(2)
m,j =A0j (x̃m, T ), A

(2)
m,(j+N) =Alj (x̃m, T ), m=1,N0 j =1,N, (51)

B
(2)
m,j =B0j (x̃m, T ), B

(2)
m,(j+N) =Blj (x̃m, T ), m=1,N0 j =1,N, (52)

C
(2)
m,k =Ck(x̃m, T ), d(2)

m =D(x̃m, T ), m, k =1,N0. (53)
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For problem I the vectors d and d(1) are given by

d =DI f, d(1) =D(1)f, (54)

where

DI
i,j =DI

j (0, t̃i ), DI
(i+N),j =DI

j (l, t̃i ), i, j =1,N, (55)

D
(1)
i,j =DI

j (x0, t̃i ), i, j =1,N, (56)

whilst for Problem II the vectors d and d(2) are given by

d =DII g, d(2) =D2g, (57)

where

DII
i,k =DII

k (0, t̃i ), DII
(i+N),k =DII

k (l, t̃i ), i =1,N, k =1,N0, (58)

D2
m,k =DII

k (x̃m, T ), m, k =1,N0. (59)

Based on the above notations we obtain

(D(1) −A(1)A−1DI )f + (A(1)A−1B−B(1))h + (C(1) −A(1)A−1C)u0 =χ (60)

for problem I, and

(D(2) −A(2)A−1DII )g + (A(2)A−1B−B(2))h + (C(2) −A(2)A−1C)u0 =� (61)

for problem II.
By introducing the following notation:

z1 =χ + (B(1) −A(1)A−1B)h + (A(1)A−1C−C(1))u0, (62)

z2 =� + (B(2) −A(2)A−1B)h + (A(2)A−1C−C(2))u0, (63)

X1 =D(1) −A(1)A−1DI , X2 =D(2) −A(2)A−1DII , (64)

we obtain that problem I has been reduced to solving the following N ×N system of linear
equations:

X1f = z1, (65)

whilst the problem II has been reduced to solving the following N0 × N0 system of linear
equations

X2g = z2. (66)

From Section 2 we know that the initial-boundary-value problems I and II have unique solu-
tions. Although this is not a proof for the unique solvability of the discrete counterparts of
the integral formulations of these problems, it is reasonable to assume here that these systems
of linear equations have unique solutions. However, these systems are ill-conditioned since the
inverse problems under consideration are ill-posed. Thus, if the right-hand sides of Equations
(65) and (66) are contaminated with errors, i.e.,

||z1
ε − z1||≤ ε, ||z2

ε − z2||≤ ε, (67)
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then the inverse solutions of (65) and (66), namely X1
−1z1

ε and X2
−1z2

ε will be very different
from the exact solutions X1

−1z1 and X2
−1z2, respectively. Therefore, instead of the straight-

forward inversion of, say, (65) we use a stable regularization method given by (see [12]) the
minimization of the Tikhonov functional

Tλ(f)= (X1 − z1
ε)tr(X1 − z1

ε)+λ(Rf)tr(Rf), (68)

where the superscript tr denotes the transpose of a matrix, λ is a regularization parameter,
and the regularization matrices RtrR are given by (see [12,13])

RtrR =

1 0 .

0 1 .

. . .


 (zeroth-order regularization), (69)

RtrR =




1 −1 0 0 .

−1 2 −1 0 .

0 −1 2 −1 .

. . . . .


 (first-order regularization), (70)

RtrR =




1 −2 1 0 0 . . .

−2 5 −4 1 0 . . .

1 −4 6 −4 1 0 . .

0 1 −4 6 −4 1 0 .

. . . . . . . .




(second-order regularization). (71)

It should be observed that the first part of the Tikhonov functional (68) is a measure of
the fit of the regularized solution to the measured data, while the second part of the func-
tional is a measure of the smoothness of either the regularized solution, its first- or second-
order derivative. Minimizing the Tikhonov functional (68), we obtain a solution f depending
on λ, namely

fλ = (X1
trX1 +λRtrR)−1X1

trz1
ε . (72)

A similar solution can be obtained for the system (66), namely

gµ = (X2
trX2 +µRtrR)−1X2

trz2
ε . (73)

The regularization parameters λ and µ can be chosen according to the L-curve method; see
[14]. Alternatively, if by plotting the norm of the residuals ||X1f λ − z1

ε || and ||X2gµ − z2
ε ||

versus the solutions norms ||fλ|| and ||gµ||, respectively, an L-curve is not obtained, then one
may employ the discrepancy principle (see [15]) i.e., we choose λ,µ>0 such that

||X1f λ − z1
ε ||≈ ε, ||X2gµ − z2

ε ||≈ ε. (74)

4. Numerical results and discussion

In this section we present and discuss the numerical results obtained by employing the BEM
combined with the Tikhonov regularization technique presented in Section 3, for two typical
benchmark examples. For these examples we have taken l =T =1 and x0 =0·5. The number of
boundary elements was taken N =N0 =40, which was found to be sufficiently large to ensure
that any further increase in this discretization did not significantly affect the accuracy of the
numerical solutions of the direct problems (1)–(3), or (2),(3),(8) if f (t) and g(x) were known.
The choice of the regularization parameters λ or µ was based on the discrepancy principle or
the L-curve criterion.
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Figure 1. The numerical time-dependent heat-source
results obtained with exact data (∗ ∗ ∗) and when
using zero-order Tikhonov regularization for p = 1
(· · · ), p = 3 (− − −), and p = 5 (−·· − ··−) per-
cent noise, in comparison with the exact solution
( ) for Example 1.
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Figure 2. The numerical time-dependent heat source
results obtained with noisy data with p = 3 and no
regularization (− − −), in comparison with the
exact solution ( ) for Example 1.

4.1. Example for problem I

With the input data

u(0, t)=h0(t)=2t + sin(4πt), u(1, t)=h1(t)=1+2t + sin(4πt), (75)

u(x,0)=u0(x)=x2, u(0.5, t)=χ(t)=0.25+2t + sin(4πt), (76)

the inverse problem (1)–(4) has the unique solution given by

u(x, t)=x2 +2t + sin(4πt), (77)

f (t)=4π cos(4πt). (78)

Figure 1 shows the numerical results obtained for estimating the timewise heat source (78)
when employing the Tikhonov zero-order regularization and when both exact and noisy data
was used. It can be seen from Figure 1 that the numerical solution obtained in the ideal case,
when no noise is contained in the input data (75)–(76), is graphically almost indistinguishable
from the analytical solution (78). In fact, the regularization parameter in this case was chosen
to be λ=0, which is equivalent to saying that no regularization is needed in this case and the
numerical solution can be obtained using a standard Gaussian elimination technique.

Next, the input data (75)–(76) was perturbed by p ∈ {1,3,5} percent random Gaussian
additive noise. Figure 2 shows the results obtained with p = 3 percent noise included in the
data and no regularization. It can be observed in this case that the numerical solution is
highly oscillatory and contains errors which are more than about one order of magnitude
larger than the analytical solution. In order to overcome this instability we use next the
Tikhonov regularization.

From the numerical results shown in Figure 1 it can be seen that the numerical solution
obtained using the zero-order Tikhonov regularization technique is converging to the exact
solution (78), as the amount of noise p decreases. Also, it can be seen from Figure 1 that
there are some inaccuracies in these numerical solutions. The inaccuracies are clearly visible
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f

t

Figure 3. The numerical time-dependent heat-source
results obtained when using first-order Tikhonov reg-
ularization for p = 1 (· · · ),p = 3(− − −), and p =
5(−·· − ··−) percent noise, in comparison with the
exact solution ( ) for Example 1.

f

t

Figure 4. The numerical time-dependent heat-source
results obtained when using second order Tikhonov
regularization for p = 1(· · · ),p = 3(− − −), and
p=5(−··− ··−) percent noise, in comparison with the
exact solution ( ) for Example 1.

Table 1. The values of the regularization parameters
λ used for Example 1.

Tikhonov order p =1% p =3% p =5%

Zero 0·00013 0·0004 0·00065
First 0·00050 0·0016 0·0025
Second 0·0015 0·0079 0·0125

at the endpoints of the time interval, where the convergence of the numerical solution is par-
ticularly slow.

Figure 3 shows the numerical results obtained using the same sets of noisy data as previ-
ously, but when first-order Tikhonov regularization was employed. The results are now clearly
improved in accuracy when compared with the zero-order results of Figure 1, although some
inaccuracies can still be seen towards the solution endpoints.

Finally, the most accurate results for this example were obtained when using second-order
Tikhonov regularization and they are presented in Figure 4. The same amounts of random
Gaussian noise as in the previous two cases were added to the input data (75)–(76), i.e.,
p ∈ {1,3,5} percent. It can be seen from Figure 4 that the numerical solutions are all stable
and very close to the analytical solution and that, as the amount of noise p decreases, they
are converging to the exact solution (78).

The values of the regularization parameter λ were chosen according to the discrepancy
principle and they are shown in Table 1.

4.2. Example for problem II

With the input data

u(0, t)=h0(t)=0, u(1, t)=h1(t)=0, (79)

u(x,0)=u0(x)= sin(πx), u(x,1)=�(x)= (2− e−π2
) sin(πx) (80)
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Figure 5. The numerical space-dependent heat
source results obtained with exact data (∗ ∗ ∗)
and when using zero-order Tikhonov regularization
for p = 1(· · · ),p = 3(− − −), and p = 5 (−··− ··−)
percent noise, in comparison with the exact solution
( ) for Example 2.

Figure 6. The L-curves obtained for p = 1(· · · ),p =
3(− − −), and p = 5(−·· − ··−) percent noise, for
Example 2.

the inverse problem (2), (3), (8) and (9) has the unique solution given by

u(x, t)= (2− e−π2t ) sin(πx), (81)

g(x)=2π2 sin(πx). (82)

Figure 5 shows the numerical results obtained for estimating the spacewise heat source
(82) when exact data was used, i.e., no noise was included in the input data (79)–(80), and
the Tikhonov zero-order regularization technique was employed. It can be seen from Fig-
ure 5 that the numerical solution obtained in this ideal case is graphically indistinguish-
able from the analytical solution (82). Next, the input data (79)–(80) was perturbed by p ∈
{1,3,5} percent random Gaussian additive noise and the numerically obtained results are
also shown in Figure 5. The regularization parameters µ were chosen according to the
L-curve criterion and their values were µ = 8 × 10−5 for p = 1%,µ = 1·5 × 10−4 for p =
3% and µ = 2 × 10−4 for p = 5% and these values were in good agreement with those sug-
gested by the discrepancy principle. The L-curves obtained for Example 2 are shown in
Figure 6.

From Figure 5 it can be seen that all the numerical solutions are stable and that, as the
amount of noise p decreases, the numerical solution converges to the exact solution (82).
We wish to report that we have employed not only the zero-order regularization, but also
the first- and second-order Tikhonov regularizations. However, the numerical results obtained
with these higher-order regularizations showed a similar degree of accuracy as the zero-order
regularization and thus they are not explicitly presented here. It should be observed that, as
also mentioned in Section 3, these higher-order regularizations, as opposed to zero-order one,
are imposing a smoothness condition on either the first- or second-order derivative instead of
the solution itself. However, these smoother, higher-order solutions are not necessarily more
accurate than the zero-order solution.
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5. Conclusions

In this paper a boundary-element method combined with a regularization technique has been
developed for obtaining stable timewise or spacewise dependent heat sources, from over-speci-
fied conditions which ensure unique solvability for the inverse and ill-posed heat-source prob-
lems. Numerical results were presented for two inverse heat-source problems which had the
input data perturbed by increasing amounts of random noise. Various orders of Tikhonov
regularization have been employed and discussed and the choice of the regularization param-
eter was based on the discrepancy and L-curve principles. The obtained results show that
the numerical solutions are stable and converge to the exact solution as the amount of noise
added to the input data decreases.

Although we have only considered Dirichlet boundary conditions, there are also solvabil-
ity theorems for the problem of finding a source for the parabolic heat equation with general
boundary conditions. A similar approach can be used for the determination of a single vari-
able source for the heat-conduction equation in another inverse formulation, with an integral
overdetermination condition specifying the energy variation of the heat-conducting system;
see [4].

The study performed in this paper can be extended to higher dimensional parabolic partial
differential equations of order n with constant coefficients (ai)i=1,n

, b and (kij )i,j=1,n
positive

definite, of the form
n∑

i,j=1

kij

∂2u

∂xi∂xj

+
n∑

i=1

ai

∂u

∂xi

+bu= ∂u

∂t
+Q(x, t) (83)

where x = (x1, . . . , xn) ∈ �, t ∈ (0, T ),� ⊂ R
n is a bounded domain and the unknown heat

source Q(x, t) is independent of the space or time variable, [7].
Future work will be concerned with the numerical determination of a source Q(x, t) =

f (t) + g(x) or Q(x, t) = f (t)g(x) which is both space- and time-dependent, but additive or
separable, from measurements of the temperature at a given single instant or at two instants
and two interior locations. Other possible future work may also concern the numerical deter-
mination using the dual reciprocity BEM of a source of the type Q(x, t) = f (t)u, [16],
Q(x, t)=f (t)u+q(t) ∂u

∂x
, [17], or Q=F(u), [18].
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Appendix A. Auxiliary results

In this appendix we first give the notations from [10, pp. 60–74], for the spaces involved in
Theorems 1–4. Let us introduce the following notation:

〈u〉α� = u(x)−u(y)

|x −y|α , (A1)

for a function u depending on x ∈R
n. Here, 0<α <1 and x, y ∈�⊆R. Moreover, we define

〈u〉αx,QT
= u(x, t0)−u(y, t0)

|x −y|α , (A2)

〈u〉αt,QT
= u(x, t1)−u(x, t0)

|t1 − t0|α
, (A3)
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for a function depending on x ∈ R
n and t ∈ R. Here, QT = � × (0, T ),0 < α < 1, and

(x, t0), (x, t1), (y, t0) ∈ QT . If � is sufficiently smooth, the Holder space Hl(�) can be
described as consisting of functions u(x) with continuous derivatives of order less or equal
with l, up to �, with the finite norm

‖u‖Hl(�) =
∑

|α|=[l]

〈∂α
x u〉(l−[l])

�
+
∑
|α|≤l

max
x∈�

|∂α
x u|. (A4)

The space Hl,l/2(QT ) consists of functions u(x, t) with continuous derivatives on QT of order
less than l, and with the finite norm

‖u‖Hl,l/2(QT ) =
∑

|α|=[l]

〈∂α0
t ∂α

x u〉(l−[l])
x,QT

+
∑

0<l−|α|<2

〈∂α0
t ∂α

x u〉(l−|α|)/2
t,QT

+
∑
|α|≤l

max
(x,t)∈QT

|∂α0
t ∂α

x u| (A5)

Here α = (α,α0) and |α|=2α0 +α.
We give now the integrals of G and ∂G/∂n which arise from the discretization of the

boundary-integral equation (22) using the BEM:

Aξj (x, t)=
∫ tj

tj−1

G(x, t, ξ, τ )dτ =




0, t ≤ tj−1√
(t − tj−1)/π, tj−1 <t ≤ tj , r =0

r(exp(−z2)/z−√
πerfc(z))/(2

√
π), tj−1 <t ≤ tj , r �=0

r{exp(−z2)/z− exp(−z2
1)/z1

+√
π(erf(z)− erf(z1))}/(2

√
π), t > tj ,

(A6)

Bξj (x, t)=
∫ tj

tj−1

∂G

∂n(ξ)
(x, t, ξ, τ )dτ =




0, t ≤ tj−1

0, tj−1 <t ≤ tj , r =0
−erfc(z)/2, tj−1 <t ≤ tj , r �=0

(erf(z)− erf(z1))/2, t > tj

(A7)

with ξ ∈{0, l}, r =|x − ξ |, z= r[(t − tj−1)]−1/2/2, z1 = r[(t − tj )]−1/2/2,

Ck(x, t)=
∫ xk

xk−1

G(x, t, y,0)dy = 1
2

[
erf
(

x −xk−1

2
√

t

)
− erf

(
x −xk

2
√

t

)]
, (A8)

DI
j (x, t)=

∫ tj

tj−1

∫ l

0
G(x, t, y, τ )dydτ

=




0, t ≤ tj−1

− 2x2−2x+1
4 −J1(x, t, tj−1), tj−1 <t <tj

J1(x, t, tj )−J1(x, t, tj−1), tj ≤ t

, (A9)

J1(x, t, t0)=− r

2
erf(z)− 1

2
√

π

x
√

r

exp(z2)
− x2

4
erf(z)

+ r

2
erf(z1)+ 1√

π

(x − l)
√

r

2 exp(z2)
+ (x − l)2

4
erf(z1) (A10)

with r = t − t0, z= x
2
√

t−t0
and z1 = x−l

2
√

t−t0
,

DII
k (x, t)=

∫ xk

xk−1

∫ t

0
G(x, t, y, τ )dτdy =J2(x, t, xk)−J2(x, t, xk−1), (A11)
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J2(x, t, x0)=−t (1+ z2)erf(z)+ 2√
π

tz+ 1
4

{
x2

0 −2xx0, x0 ≤x

2xx0 −2x2 −x2
0 , x <x0

(A12)

with z= x−x0
2
√

t
.

In the above expressions, x ∈ [0,1], t ∈ (0,1], and erf and erfc are the error functions defined
as

erf(ξ)= 2√
π

∫ ξ

0
e−σ 2

dσ, erfc(ξ)=1− erf(ξ). (A13)
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